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Abstract—The physical properties of highly deformable
objects such as clothing poses a challenging problem for
autonomously acting systems. Especially, grasping and manip-
ulation require new approaches that can accommodate for an
object’s variable and changing appearance.
In this paper, we present a system that is capable of fully

autonomously transforming a clothing item from a random
crumpled configuration into a folded state. We describe a
method to compute valid grasp poses on the cloth which
accounts for deformability. Our algorithm includes a novel fold
detection and grasp generation strategy, which suggests grasp
poses on cloth folds. Machine learning techniques are used to
evaluate these grasp poses. In our experiments, we use a stock
PR2 robot whose two arms alternatingly perform grasps on a
T-shirt equipped with fiducial markers. The goal of this grasp
sequence is to bring the T-shirt into a configuration from which
the robot can fold it. In several experiments, we demonstrate
the performance of our approach.

I. INTRODUCTION

Since the middle of the 20th century, robots have become
a key part of advancing the production industry and are
increasingly used in domestic environments today. Laundry
is high up on the list of mundane household chores that many
people do not want to do and could, presumably, be done by a
service robot. In a modern household, doing laundry requires
washing, drying, and folding clothing, a three step process.
What appears to be easy tasks for a human, poses significant
challenges for a robotic system. Most industrial robots were
developed to work with rigid objects in a highly repetitive
way. Clothes, however, consist of non-rigid materials that
cannot be handled with the same repetiveness, which requires
a number of additional skills currently unavailable to robots.
The limited manipulation capability of current robots

poses a major challenge in automating laundry. Clothes are
highly deformable objects. This means that shape, appear-
ance, and other mechanical and visual properties vary as a
result of previous handling or as a result of environmental
effects such as gravity. In order to manipulate an article of
clothing, a robot not only needs to understand the article’s
current configuration but also needs to estimate how an
action would change this configuration.
We consider the task of autonomously folding a T-shirt,

where initially the T-shirt is in a random configuration as
illustrated in Fig. 1(a). The following subproblems can be
identified:

• Picking up the T-shirt from a table.
• Perception of the shirt in its current configuration.
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• Estimation of where the gripper is holding the shirt.
• Selecting a manipulation action that brings the shirt into
a configuration closer to a desired state.

• Executing graps on the T-shirt to physically change its
configuration.

• Folding the T-shirt once it has been tranformed into an
intermediate configuration from which it can be folded.
This configuration should be reachable by repeated
execution of the perception, estimation steps and the
selected manipulation action.

This paper addresses all of the aforementioned subprob-
lems and we present a system capable of automatically
folding T-shirts. Our bimanual manipulation approach al-
ternatingly uses one arm to rotate a piece of clothing in
front of the robot’s sensors and a second arm to grasp a
second point with the goal of bringing the garment into
a desired configuration. Grasps are selected by detecting
fiducial markers and fold lines on the hanging cloth trying
to bring the garment’s configuration closer to the goal state.
For the particular task of folding a shirt, the goal state of
the grasping process is having both grippers holding the
shirt at the shoulder points. Grasping poses for a desired
grasp point are calculated by simulating the grasping action
and evaluating the quality of each grasp pose using a score
function that calculates a score based on a set of geometrical
features. This score function was automatically trained using
machine learning techniques on large set of training data.

II. RELATED WORK

Maitin-Shepard et al. [1] describe a system capable of
picking up unseen rectangular towels from a table and
detecting and grasping the tips of the towel corners. The
towel tips are regrasped until the towel is brought into a
configuration where both grippers are holding adjacent towel
corners. From this well-defined configuration, the towel can
be folded with an open-loop procedure. While their approach
works well with rectangular cloth items it may not scale to
garments with more complex topologies requiring grasping
of arbitrary points on the cloth.
In more recent work, Cusumano-Towner et al. [2], ad-

dress the subproblem of bringing clothing items into known
configurations. They describe an HMM-based method to
identify the configuration of a clothing item that is held
using two grippers by comparing its observed contour with
simulated possible contours. Their focus is on determining
the configuration of clothing articles using cues from 2D
perception. In contrast to their work, our approach uses 3D
and 2D information from multiple views to detect folds in
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Fig. 1. T-Shirt folding procedure: (a) shows the T-shirt in its initial random configuration. After the T-shirt is picked up from the table (b), the robot begins
scanning the shirt by rotating it (c). Thereby, the robot acquires point cloud data and records the positions of the fiducial markers. Based on the recorded
data, grasps for the free arm are computed, evaluated and the best one according to a greedy policy is executed (d). If the grasp was successful, the other
gripper releases the shirt. Steps shown in (c) and (d) are repeated with switching roles of the two arms until both grippers have potentially grasped points
that constitute the prespecified desired configuration shown in (e). The correctness of the configuration is verified. If the verification fails, the robot starts
over with scanning the shirt (c). If the desired configuration is positively verified, the robot can fold the shirt up. The result is shown in (f).

the cloth configuration such that grasp points are not limited
to the cloth’s current contour.
Fumaki et al. [3] describe a system with two robotic arms,

where, similar to our system, the clothing item is held up by
one arm and rotated in order to scan a shirt. They then use the
other arm to grasp the lowest hanging point of the item. This
process is repeated until the item is in a desired configuration.
Note that this requires that both the holding point and the
lowest hanging point of the clothing item are inside the
reachable space of both arms. This restriction does not apply
to our approach as arbitrary points can be grasped. This
is essential for handling adult-sized clothing with the PR2
platform used in our experiments, as the distance between
two points on the clothing item can exceed the arms vertical
or horizontal span.
Furthermore, van den Berg et al. [4] describe a system that

folds clothing items that are already spread on a table using
gravity-based folds. Their algorithm computes a sequence of
motions to fold the item given the geometry of the item and
desired fold lines.
The grasp heuristic we describe in this paper is similar

to the work of Hsiao et al. [5]. They describe a heuristic to

find grasps for unknown rigid objects based on point cloud
data. In contrast their work, an automatically learned score
function is used to evaluate these grasps.
Saxena et al. [6] use a Bayesian classifier applied to 2D

image features and 3D point cloud features in order to predict
whether a grasp on an objects will succeed. As they are
dealing with rigid objects, features based on the presence and
symmetry of cloud points as well as force closure criteria are
used.
Pelossof et al. [7] employ a support vector machine for

learning a grasp evaluation function. They simulate grasps of
objects with known surfaces and use object shape and grasp
parameters as feature vectors to train an SVM that estimates
the stability of a grasp. In our approach the surface is not
known beforehand and physical grasps are evaluated using
geometrical features.

III. SYSTEM OVERVIEW
A. Robot Platform
In our experiments, we use Willow Garage’s PR2

robot [8]. The PR2 robot is equipped with two 7-DOF arms
which feature two-finger parallel jaw grippers mounted on



a rotating wrist. The PR2 comes with an extensive set of
sensors, including wide and narrow angle stereo camera
pairs mounted on its head. Furthermore, mono-cameras are
located in the robots forearms. The PR2 grippers feature
pressure sensor arrays in their fingertips. These were used
to determine whether the cloth item has been successfully
grasped.

B. Folding Procedure
In the following, we describe the steps that comprise our

approach to the problem of bringing a T-shirt from a random
configuration into a folded state. The steps involved in this
approach are illustrated in Fig. 1.
1) Pick up: The robot is confronted with the T-shirt in a
random configuration on a table. The T-shirt is detected
on a table and its highest point is grasped.

2) Perception: The shirt is held up by one arm and rotated
by 360 degrees in order to record stereo data and 2D
images. During this process, a 3D model of the shirt is
generated. This includes a point cloud representation,
positions of folds, and positions fiducial markers. This
data is then processed in the following steps. See
Sec. IV for details.

3) Estimation of current grasp point: The current grasp
position is estimated based on the position of detected
fiducial markers. This process is described in Sec. V.

4) Selection of next grasp point: Our current approach
uses a greedy policy to select the next grasping action.
Given the current grasp point and identifiable regions
of the shirt in the current configuration, the goal of
this policy is to bring the shirt into a configuration
where both shoulders are grasped. The next grasp point
selected by the greedy policy is thus the point with
the smallest geodesic distance to target grasp points
(i.e., the shirt shoulders). The geodesic distances are
calculated from a mesh representation of the T-shirt as
shown in Fig. 2(b).

5) Grasp pose computation and evaluation: For the se-
lected grasp point, a pose for the gripper is computed
and evaluated. See Sec. VI for details. If for a selected
grasp point no valid pose can be found, the next best
point according to step 4) is picked. This process
repeats until the best valid and executable grasp pose
is found.

6) Grasp execution: The determined grasp pose is ex-
ecuted. The T-shirt may be rotated by the holding
gripper such that the other grasping gripper can reach
the computed pose.

7) Grasp verification: If the desired goal configuration is
believed to be reached a verification step is performed.
The grasp points of both grippers are estimated and the
grippers are rotated to ensure the T-shirt is hanging
correctly between both grippers. If the shirt is not
grasped at its shoulders, the procedure continues at
step 2).

8) Folding: Once the T-shirt is held at the desired target
points located at the shoulders, an open loop folding
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Fig. 2. (a) The T-shirt with printed fiducial markers. The markers that
were detected during one 360-degree scan are highlighted in the image.
(b) A triangle mesh is generated for measuring geodesic distances between
positions on the T-shirt surface. Here, the geodesic distance of points on
the shirt surface to the left shoulder is visualized.

routine is initiated. Thereby the sleeves and shirt sides
are rotated inwards and the shirt is placed on a table
with one folding motion. This simple open loop routine
yields satisfactory results.

The perception step 2), the grasp point estimation step 3)
and the grasp computation and evaluation step 5) form the
key components of our system and are explained in detail in
the next three sections.

IV. PERCEPTION
A. Fiducial Markers
In our current system, we focus on the grasping and

planning aspects of cloth manipulation. Therefore, we chose
to sidestep the problem of identifying the part of a cloth
item to which a particular fold or section belongs. However,
interesting work to solve this problem has been presented
in [2]. In order to identify the cloth parts, fiducial markers
which contain digital codes as ID numbers as described in [9]
were printed onto a regular adult-sized T-shirt. We modified a
version of ARToolKitPlus [10] to detect multiple markers on
the cloth simultaneously under varying lighting conditions.
The marker layout is shown in Fig. 2(a). From pre-recorded
photographs of the front and rear side of the flat shirt, a
triangle mesh representation is generated automatically. Only
the openings in the sleeves, collar and bottom are manually
annotated.
This mesh representation, as shown in Fig. 2(b), allows

for fast calculation of geodesic paths between points on
the T-shirt surface using the algorithm described in [11].
The length of these geodesic paths are used for grasp point
estimation.

B. Point Cloud Acquisition and Preprocessing
In order to find and evaluate grasps on the clothing item,

a precise representation of its 3D configuration is needed.
Thus, the robot suspends the item from its vertically aligned
gripper such that it can rotate the hanging cloth without
inducing significant changes to the cloth configuration. This
effectively allows for multiple camera view points the current
cloth configuration. While rotating, point clouds from the
stereo camera are recorded and registered as shown in



Fig. 3(b). During this scanning process, the mono cameras in
the robot’s head and arms detect the 3D positions of fiducial
markers. The free arm is moved up and down to increase
the number of detected markers. Additionally, camera images
from a number of distinct positions are taken for detecting
folds based on 2D features.

V. ESTIMATION OF GRASPED POINTS
During the scanning process, the 3D positions xi of the

detected markers i as well as the pose of current gripper
xg are recorded. This information is used to calculate a
maximum-likelihood estimate of the T-shirt mesh vertex v

∗

g

at which the shirt is currently held by the gripper. Similarly,
this estimate is used to verify that both shoulders have been
grasped, by detecting markers when the shirt is held up.
Similar to [4], we assume infinite flexibility of cloth

material, i.e., there are no internal forces in the cloth as
a result from bending it. Also, we neglect the effect of
stretching of the cloth due to its own weight and friction
between cloth parts. Thus, the euclidean distance between
each pair of points on the cloth can be at most the length of
the geodesic path between these points.
When the cloth item is suspended from the gripper without

contact to other objects or the robot itself, we can make the
observation that all points of the clothing piece tend to fall
straight down due to gravity (or at least on a vertical cone
centered at the gripper position due to the thickness of the
material). Thus, the observed euclidean distance between the
position of holding gripper’s fingertips and a given marker
position dieukl = ||xi−xg||2 should be equal to the geodesic
distance digeod = geodesicDistance(vi,vg) between this
marker’s surface position on the cloth and a surface position
vg where the T-shirt may have been grasped.
Furthermore, we make the naive-Bayes assumption that

the detections of the markers are conditionally independent.
Thus, the ML-estimate of vg can be expressed as

v
∗

g = argmax
vg

∏

i

p(dieukl |digeod) ,

where we choose p(·) to be a Gaussian density function
with mean digeod and a standard deviation σ(digeod ) which
increases linear with the digeod . Equivalently, we can minimize
the resulting negative log-likelihood:

v
∗

g = argmin
vg

∑

i

(dieukl − digeod)
2

σ(digeod)2
.

We increase σ to address violations of the above men-
tioned assumptions as they become more pronounced for
larger geodesic distances. In particular, the infinite flexibility
assumption does not always hold, as topologically distant
cloth parts may be bend upwards and remain located on top
of other cloth parts, causing observed euclidean distances to
be much smaller than predicted. As these cases only appear if
there is enough cloth material to bend, the geodesic distance
is typically large and thus the effect on the grasp point
estimate is in practice negligible.

VI. GRASP POSE COMPUTATION AND EVALUATION
Finding and evaluating grasps for highly deformable ob-

jects such as suspended cloth differs significantly from grasp
planning for rigid objects. While for rigid objects the torques
and forces exerted onto the object are of major concern [12],
grasp planning for cloth items must take the possible flexing
of the material into account.
For instance, grasps on the cloth may be desired that

require the sections of the cloth to be pushed away during
the grasp approach. This type of grasp would be impossible
with traditional grasp planning approaches for rigid object
because the robot’s end effector is in collision state with the
portion of the cloth that can be pushed away. Thus, the grasp
may still be valid, even though the grasp is in collision with
the object in the current static configuration.
Here, our goal is to find whether it is possible to grasp

a clothing item close to a given position on the T-shirt
manifold, and if so, return a valid 3D grasp pose that
corresponds to this surface position. In the following, we
present a heuristic approach to solve this problem using both
3D stereo data and 2D image features.

A. Fold Detection
For planning grasp poses on garnments, it is important to

distinguish between the part of the cloth item which is to be
grasped and the parts that can be ignored or moved away. For
this, fold lines that separate these parts are identified based
on image gradients caused by the folds’ shadows. These fold
lines are then used to segment the point cloud as illustrated in
Fig. 3(b). Furthermore, the segmentation allows for further
processing of a largely reduced point cloud, which results
in significant speed gains for the grasp computation. In this
paper, we focus on detecting folds that run in a ray within
a certain offset from the gripper, as these folds are the most
commonly encountered.
Two neighboring folds or overlapping portions of the cloth

create a distinct shadow line on the shirt surface. These lines
can be reliably detected in the camera images by filtering
the shadow gradients and applying a Hough transform as
described in [13]. Information from the detected fiducial
markers was not needed, even though this information would
allow to filter out false positives, which were mostly caused
by the marker pattern itself. To remove false positives, we
check for the spacing of gaps in the detected lines that occur
at roughly the spacing of the markers. A resulting detection
is shown in Fig. 3(a).
The detected 2D lines in the camera image are then

projected onto the cloth surface. For this, we use RANSAC
[14] to approximate tangent planes to cloth surface. The 3D
fold lines are obtained by projecting the 2D lines onto their
corresponding tangent planes.
Given a desired point to grasp pg, a point cloud P = {pi}

and a set of 3D lines L = {lj}, where lj = aj + t · bj , we
determine the cloud points belonging to the cloth portion that
we want to grasp as follows:
First, the two lines lk and lm ∈ L closest to pg are

determined, subject the constraint that the perpendiculars
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Fig. 3. (a) shows a detected fold line on a 2D image. In (b) the resulting 3D lines are shown in green. The point cloud segment relevant for grasping is
colored in white, other points are shown in red. The blue box-based gripper model is used for grasp simulation. The drawing in (c) illustrates conceptually
from a top view perspective how the tangent planes were constructed which segment the point cloud. In (d) the resulting physical grasp is shown.

rk(pg) and rm(pg) from pg to lk and lm have opposing
directions. The perpendicular rj(pi) from a point pi to a
line lj = aj + t · bj is

rj(pi) = ai − pi +
(pi − ai)

T
bi

bi
Tbi

· bi .

Thus, we can find the first line lk for which the per-
pendicular distance ||rk(pg)||2 is minimal. Equivalently, the
second line lm can be chosen from the set of lines {lr ∈ L :
rk(pg)

T
rr(pg) < 0} for which its perpendicular is minimal

if this set is not empty.
These perpendiculars are used to decide for each point

in P whether it belongs to the cloth portion we want to
grasp. We compare the perpendicular from the desired grasp
point pg to the perpendicular from each point pi in the point
cloud. Again, we are interested in their relative orientation,
so we calculate dot product rk(pi)

T
rk(pg). If it is negative,

pi must lie on the other side of the lk and is thus not
considered part of the cloth portion where pg is located on.
Effectively, this cuts the point cloud along the plane passing
through the 3D line lk with a normal vector located on
this line pointing towards pg as illustrated in Fig. 3(c). The
same procedure is applied using the second line lm. Note,
that theoretically there are ”degenerate” cases conceivable
where this segmentation rule does not discriminate accurately
between points on the cloth part on which pg is located
and the neighboring part separated by a fold, e.g., if the
neighboring segment wraps around the cloth portion to be
grasped and pg is close to the fold. However, we did not
observe this effect in practice, and it is negligible compared
to missed fold detections and missing surface points. Also,
we are only interested in segmenting the cloth parts around
the desired grasp point pg as for the grasp pose computation
we limit the radius of search to feasible poses, i.e. how the
planes segment the point cloud on the far side of the cloth
surface.

B. Grasp Generation
In the previous section, we described how we obtain a

point cloud segment surrounding a desired grasp position. We
now use this to generate a set of valid grasp poses for a two-
finger gripper. We thereby extend the approach described in
[5], where the problem of computing and ranking grasp poses
for unknown objects by fitting a simplified gripper model
around the point cluster belonging to an object is addressed.
However, unlike this work, our algorithm allows for arbi-
trary grasp approach directions and uses machine learning
techniques to evaluate grasps as described in Sec. VI-C
As segments of folds which are not in the current area of

interest for grasping are virtually cut away from the point
cloud, collision checking on the remaining point cloud can
be used to generate valid grasps. In our algorithm, a gripper
model consisting of three collision boxes is used: One for
each gripper finger and one for the palm of the gripper. When
fitting the gripper model to the cloth part, none of its cloud
points may lie within one of the collision boxes in order to
constitute a valid grasp pose. The space between the finger
boxes is represented by forth box which must contain cloud
points.
Given a position to grasp, we randomly sample positions

and orientations around the given position using a rapidly
space exploring random tree [15]. We initialize the search
with the closest cloud point and its corresponding normal.
The surface normals is estimated as described in [16] by fit-
ting a least-square plane through a set of neighboring points
within a certain radius, where the plane’s normal is used to
approximate to the point’s surface normal. For markers close
to the natural border of the shirt, we additionally initialize a
random tree using a vector orthogonal to the surface normal.
The sampled gripper pose is locally adjusted by moving the
simulated gripper pose along its roll axis, such that it is not
in collision, but the number of points in the space between
the fingers is maximized. Thereby, the gripper pose is also



adjusted in lateral direction and as well as its opening width,
so that the gripper is centered between the left and rightmost
points inside the space box and the fingers touch them.

C. Grasp Evaluation
As a set of valid grasp poses for a given 3D point is

calculated, the individual grasp must be analyzed and the
likelihood of their success evaluated. A score function that
assigns each grasp a score based on a set of geometrical
features was generated using a support vector machine with
a Gaussian kernel function [17].
The features are based on the position and normal vectors

of the cloud points inside the space box of the gripper model.
The following features were selected:

• The total number of points in the space box.
• The number of space box points within a margin of
each finger: Typically, the more points are close to the
fingers contact surface the more robust the grasp.

• The orientation of the normals of the points within
a margin of each finger: Ideally, the object’s surface
normals are pointing towards the finger contact surface
which will be touching them during a grasp. As a
numerical features, the average of the dot products of
the surface normals within prespecified regions of the
spacebox and the normals of the closer finger’s contact
surface is used.

• The distance between the fingertips and the closest point
to the palm in longitudinal gripper direction.

• The grippers opening width: As the number of points
in the space box is not independent from the grippers
opening width this feature was included.

During the training phase, the robot randomly picks points
on the cloth surface and physically executed the first valid
grasp found. For each such grasp, the feature vector is
recorded and a label indicating whether or not the grasp
would have been successful. The success of a grasp is
verified using the fingertip pressure sensor array and the
encoder reading of gripper opening width. The whole process
for recording the training set can thus run fully automatically.

VII. EXPERIMENTS
A. Grasp Evaluation Learning
In order to generate training data for estimating the

grasp evaluation function, we let the robot continuously
grasp random points on the T-shirt while being suspended
from one gripper. Successes and failures were automatically
recorded by analyzing the fingertip pressure sensors and
gripper opening positions. If a grasped succeeded, the T-
shirt was suspended from the grasping gripper and the other
gripper released the shirt and was subsequently used for
grasping attempts. In total, 487 sequential grasp attempts
were recorded, 271 of which being successful and 216 failed.
We trained a SVM on this data set using 10-fold cross
validation. For successful grasps we achieved an F-measure
of 77% as the harmonic mean of a precision of 76% and a
recall of 78% which we chose as operating point. The plot
of true positive rates vs. false positive rates are shown in the

Fig. 4. True positive vs. false positive rate for grasp classification resulting
from 487 training examples using 10-fold cross validation.

ROC-curve in Fig. 4. Note that for the experiments for the
complete folding procedure the actual success rate of grasps
in terms of precision was higher than predicted1. This effect
may be explained by the fact that for each grasp point a set
of grasps is calculated and only the one with the highest
score, i.e. the highest decision value is executed.

B. Folding Procedure
For a complete folding procedure starting with picking up

the shirt from the table to folding of the shirt, 20 complete
runs were conducted. The results are shown in Tab. I.

TABLE I
FOLDING PROCEDURE RESULTS

Average Min Max
Total number of grasps per run 5.9 1 15

Percentage of failed grasps 0.14 0.00 0.20
Total duration per run 19mins 6s 5min 45s 45min 58s

18 runs completed successfully. However, we observed
two failures. In one case the shirt got mechanically caught
behind the gripper fingers when it tried to release it and
human intervention was required. This was the only time
this failure case was observed including the 487 grasps dur-
ing the evaluation function training procedure. The second
failure case occurred when the grasp verification predicted a
successful grasp even though one gripper had caught multiple
layers of cloths. Thus, the shirt was not hanging correctly
from both grippers and the folding routine failed.
We observed widely varying counts of regrasps until the

shirt was in the desired configuration. In one case the shirt
was initially picked up from the table at the shoulder such
that only one grasp of the other arm was necessary to
bring the shirt into the desired configuration. At most we
observed 15 regrasps. Part of this can be explained by the

1We can only observe precision. False or true negatives do not occur
because a grasp predicted to fail at given operating point will not be
executed.



sub-optimality of the greedy heuristic. This policy often
yields reasonable results because it brings the shirt quickly
in a configuration where grasp points close to shirt shoulders
can be reached even if the shirt is initially hanging from its
bottom. However, grasping of points very close but not close
enough to the target positions turned out be detrimental to
the performance as it prevented the actual target positions to
be grasped. Grasping of points further away may lead to a
reduced number of regrasps.
The average duration to complete the full process was

19mins 6s. Most of the time is spent on the scanning process
which takes about 2mins 20s for each grasp. This is mostly
due to the need of moving the free arm to capture images
from different arm camera poses. Additional fixed cameras
mounted on the robots torso would have a similar effect
while reducing the scan time tremendously. Also, scanning
only interesting parts of the cloth configuration would be
conceivable but this would require a more elaborate planning
approach.

VIII. SUMMARY AND CONCLUSION
In this paper, we presented a robotic system capable of

autonomously folding a T-shirt that is placed onto a table in
front of the robot in an arbitrary configuration. The folding
procedure first brings the shirt into a defined configuration,
e.g. grasping it with two grippers on the shoulder parts next
to the collar, and subsequently folds it into a stack. Since the
folding itself can be performed rather easily with an open-
loop algorithm, we put the emphasis of our work on bringing
the shirt into a suited configuration. For this, it is necessary
to determine the shirt’s current configuration and plan a
sequence of grasps in order to bring it into a well-suited state.
Currently, a greedy strategy for picking the next grasping
point is used. In order to perform a grasping operation at the
desired shirt position, grasping actions were simulated and
the quality of each grasp pose was evaluated using a function
that calculates a score based on a set of geometric features.
This score function was automatically trained using a SVM.
Finding good poses for grasping is especially difficult for
deformable objects such as cloth. Most planning algorithms
treat the object to grasp as rigid and would reject poses
that move the gripper into a fold. For this purpose, a novel
fold detection and grasping strategy was developed that in a
preprocessing step virtually cuts clear the fold to grasp. In
all our experiments we used a stock PR2 robot whose two
arms alternatingly perform grasps on a T-shirt equipped with
fiducial markers.
For the whole folding procedure, starting from picking up

a T-shirt in a random configuration to folding and placing
it on a table we observed a success rate of 90%. To further
improve these results, we plan to replace the greedy strategy
that is used to determine the next grasping point by a learned
policy that is capable of choosing a grasping point geo-
metrically further away from the goal position to overcome
regrasping problems as described in the last chapter.
The described procedure is likely to apply to general

garments, as, except for the open-loop folding routine, no T-

shirt specific knowledge is incorporated. The use of fiducial
markers allowed us to focus on grasping and manipulation
strategies. However, in future work we intend to replace the
markers with 2D and 3D vision-based approaches for detect-
ing and identifying keypoints on off-the-shelf garments.
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