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Abstract— In this paper, we describe a remote lab system
that allows remote groups to access a shared PR2. This lab
will enable a larger and more diverse group of researchers
to participate directly in state-of-the-art robotics research and
will improve the reproducibility and comparability of robotics
experiments. We identify a set of requirements that apply to all
web-based remote laboratories and focus on solutions to these
requirements. Specifically, we present solutions to interface,
control and design difficulties in the client and server-side
software when implementing a remote laboratory architecture.
The combination of shared physical hardware and shared
middleware software allows for experiments that build upon
and compare against results on the same platform and in
the same environment for common tasks. We describe how
researchers can interact with the PR2 and its environment
remotely through a web interface, as well as develop similar
interfaces to visualize and run experiments remotely.

I. INTRODUCTION

As illustrated by the high response rate to the PR2 Beta

program, the demand for high quality research platforms far

outweighs the supply. The scarcity of such platforms is a

limiting factor in the productivity of the robotics research

community and the development of the robotics market.

Additionally, these platforms often come at a high cost

making them difficult to obtainable for smaller universities

and research groups. To address these problems, we propose

a remote research lab in which users can develop, test, and

compare robot controllers.

Previous attempts to create remote lab systems and online

robots [1], [2], [3], [4], [5], [6] focused on simple experi-

ments and online learning. Additionally, these systems did

not build upon shared robot middleware systems. This is

partly due to the fact that many of these labs were not

intended for shared research experimentation. One conse-

quence of this is that researchers could not necessarily easily

extend previous efforts to build their own labs.

Shared, opensource robot middleware infrastructure makes

it easier for researchers to compare to and build upon

each other’s work. These systems generally allow separate

components to interact and share data – a feature necessary

for a flexible, extensible robot software system. Trevelyan et

al. created middleware for their remote lab in order to have a

flexible enough system to support an effective remote access

laboratory [7]. Additionally, the higher abstraction level of

middleware lessens many of the problems of robot control
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Fig. 1. In the PR2 remote laboratory clients connect over the internet, run
experiments, and develop robotic applications on a shared PR2 platform.

in a remote environment. For example, by providing IK-

based end-effector control of the robot’s hands, middleware

eliminates the need for a remote client to be capable of

sending several joint velocity commands with extremely low

latency. Instead, the client need only send simple messages

regarding a single point in space. Similarly, robust object

detection allows only object position and type be sent to

a remote client for visualization rather than a bandwidth

intensive point cloud or image.

We use ROS, Willow Garage’s robotic middleware system

[8], in part due to its popularity: currently there are at least

116 ROS repositories and 3089 ROS packages1. Not only

can we can leverage this body of work to create a remote

lab system, but the researchers whose work we build upon

can also take the infrastructure we have used to build this

remote lab and use it in their own research.

Previous attempts to create remote lab systems had prob-

lems with connectivity, software requirements, and giving

users the ability to do closed loop control. New web tech-

nologies such as HTML5 and Javascript solve many of

the difficulties of user interfaces without requiring users

to download additional software or plugins other than a

supported web browser.

In this paper, we present a system that allows remote

groups access to a shared PR2. A PR2 Remote Laboratory

requires robust remote control, external sensing, remote

safety systems, remote error recovery, static and dynamic

environment modeling, visualization, and environment con-

figuration. By solving these problems we allow a larger and

more diverse group of researchers to directly participate in

state of the art robotics research. It will also give us the op-

portunity to carry out joint experiments and therefore foster

1http://www.ros.org/wiki/rosdoc rosorg
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collaboration between research labs. Additionally this lab can

be used for research challenges such as the annual Learning

from Demonstration Challenge. Researchers will, for the first

time, truly be able to compare their results and evaluate the

strengths and weaknesses of proposed algorithms.

II. RELATED WORK

Researchers have examined using the internet to allow

humans to remotely interact with and monitor robots. Re-

mote laboratories offer the possibility to improve distance

education, timetabling issues, accessibility and the cost of

running laboratories. Li et al. [9] also cite the scarcity of

equipment and supervisors as a reason for pursuing remote

laboratories. A notable examples of a successful remote

laboratory installation is the Telerobot of the University of

Western Australia (UWA) [10], [7]. This robot has been

online for over ten years and it has been used by many

students as remote laboratory to test kinematic models and

control algorithms allowing them to stack blocks. Other

examples of similar remote laboratory systems can be found

in [5], [11], [6], [4]. Previous remote laboratories for online

learning focused on simple experiments such as manipulating

simple objects [10], [7], visual servoing [12], basic physics

[6], and signal processing [11].

Other online robots have mainly been built for entertain-

ment purposes. Goldberg et al. placed a robot in a garden

and allowed users to view and interact with the robot over

the web. Users were able to plant seeds, water, and monitor

the garden [1]. Also, Taylor and Trevelyan provided public

internet access to their UWA robot, which users could use

to stack brightly colored blocks [10].

Recently, work in the machine learning community ex-

amined using crowdsourcing approaches to train robots. For

example, Chernova et al. [13] examined using a multi-player

video game where users collaborate to provide user demon-

strations. Crick et al. [14] allowed a large number of users

to demonstrate policies on an actual robot within a maze

environment using one of two interfaces. The remote lab

described in this paper could be used for such experiments,

as well as experiments that do not require learning or human

user studies.

Connectivity is probably the most significant issue in all

remote lab systems. If a client has a slow connection, then

they may not be able to receive or send all data. The amount

of data sent to a client must be adapted to the available

bandwith by either discarding some of the data or selecting

low bandwidth data sources. The main data source for the

listed remote laboratory systems is one or multiple video

streams. The datarate for a single VGA (640x480), 30 fps,

MJPEG compressed video stream is 2.4 Mbps. Thus, on slow

connections streaming video will be at low framerates and

delayed by several seconds due to buffering [7].

Another important issue for web operated remote labora-

tory systems arises from the choice of the client software. For

example, Dalton [15] implemented a Java applet client that

provided asynchronous communication between the UWA

robot [7] and the remote user. This requires the user to

download and install a Java runtime engine and several

plugins. Dalton also reported that different combinations of

browser, operating system, graphics hardware and processor

would result in different appearance of the Java applet.

III. PR2 REMOTE LABORATORY

A. Hardware Setup

The robot platform used in the remote laboratory described

in this paper is the PR2 personal robot [16], a two-armed

robot with an omnidirectional base. Equipped with two 7-

degrees-of-freedom compliant arms, the PR2 is designed for

compliant interaction with the environment. The compliance

is a important safety feature that includes both the safety

of humans and objects that may be present in the robot’s

environment as well as protecting the robot itself when being

used by a remote user. The PR2 has an extensive sensor

suite allowing remote users to perform a variety of mobile

manipulation tasks.

The remote lab environment is equipped with additional

sensors. Four cameras observe the robot’s work-space and

allow the remote user to see the PR2 and objects in its

environment. In addition to the 2D cameras, a depth camera

is used to acquire a 3D view of the remote lab. A PhaseSpace

optical motion capture system is used to obtain ground truth

pose information for the robot and objects. The PhaseSpace

system tracks active LED markers and provides highly

accurate, real time motion data which is necessary to update

the remote lab’s state.

B. Software Infrastructure and Design

The software is structured on both the client and server

side. An overview is presented in Fig. 2. The client side

consists of a web browser based user interface implemented

in HTML and Javascript. This interface is described in more

detail in Sec. V.

On the server side software is roughly divided into three

main layers: hardware interfaces, ROS middleware, and web

services. The hardware interface layer comprises a number

of software modules concerned with receiving and time

stamping all sensor data. This layer also contains interfaces

to the robot’s actuators.

ROS, the robotic middleware controlling the PR2, provides

a structured communications layer above the host operating

system. It is organized into a so-called computation graph

which is the peer-to-peer network of nodes that are process-

ing data together. The nodes communicate asynchronously

with each other by passing messages called topics based on

publish / subscribe semantics. A synchronous communica-

tion model is realized by services. In this case, a client makes

a request and waits for a reply before continuing. Due to its

popularity and wide adoption, ROS has successfully devel-

oped from yet another robotic middleware package into an

extensive community that enables exchange of software and

knowledge. As a result a large collection of ROS software

packages is publicly available in open source repositories. We

can leverage this community by creating remote laboratory

experiments on a different level than has been previously
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Fig. 2. Flowchart of the remote lab’s software system. The software is roughly divided into four main layers: Hardware interfaces, ROS middleware, web
services, and user interface.

attempted. For example, packages for manipulation2 and

navigation3 are already available and can be used as reference

implementations for experiments seeking to improve single

components.

Additonally, many of the packages availble in ROS ab-

stract robot control or perception in a high-level way. For

example, navigation packages process high-fidelity range-

finder data into positional information. This provides op-

portunities to lessen latency and bandwidth requirements

while providing control of the robot and perception of its

environment.

IV. ROSBRIDGE AND ROSJS

ROS addresses the connectivity and synchronization re-

quirements by providing a flexible communication layer.

However, it was designed to function in a homogenous,

tightly-integrated environment with extremely fast hardware

connections, not for slow and unreliable connections over the

web. We use Rosbridge [17], which exposes the capabilities

of ROS, such as a robot’s data streams and controllers,

through POSIX and web sockets accessible anywhere over

the internet, as well as providing security mechanisms and

run-time tools for interacting with and maintaining a robot

system. We also use rosjs, [18] a Javascript binding for ROS

which provides a powerful array of visualization and control

tools that can be used directly from a web browser. The

combination of Rosbridge and rosjs hides much of the low

level complexity of ROS from application developers through

abstractions and is designed to meet the needs of develop-

ers with web programming experience. There are multiple

advantages to the ability to develop robot applications in

2http://www.ros.org/wiki/pr2 object manipulation
3http://www.ros.org/wiki/navigation

the web browser. Web browsers are familiar interfaces that

are widely used, especially by nontechnical users. Javascript

allows for rapid and flexible user interface and visualization

development. Applications developed within a web browser

are also portable across platforms, and updates and new

functionality can easily be provided.

(a) Datarate for the three largest topics sent at production rate.

(b) Datarate for the three largest topics after optimizing. Here,
the /tf topic is transmitted only as partial state update of
changing state variables and throttled to 10 Hz. Spikes in the
data correspond to joint motion events where multiples states
are updated in a short period of time.

Fig. 3. Comparison of datarates before and after optimization

Rosbridge includes several helpful features to assist robot

application developers and researchers in creating robot
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controllers and interfaces that are executed over the network.

The first feature is that Rosbridge exposes ROS services and

topics. Rosbridge provides several additional services, such

as dynamic access to the types and objects associated with

topics and services, as well as runtime control of the ROS

environment, such as launching nodes and setting parameters.

The second feature that Rosbridge provides is access

control. When allowing remote users access to a robot

security is a fundamental concern. rosjs provides two types

of security: protected services/topics and key authorization.

Protected topics and services are necessary when there are

critical services that the client should not interfere with –

for example, those that enforce human or robot safety. Key

authorization allows the developer to limit access to a robotic

web application to specific users.

The third feature is data logging. A remote lab is most

useful when there is a mechanism to record data from

experiments. Rosbridge provides a mechanism for developers

and users to save data. ROS developers may log data using

ROS on the server side, but the logging mechanism also

supports the logging of client-side information about the

user’s experience. Additionally, rosjs provides a data logging

widgets4 to record data for experiments so that remote

users can decide on the fly what data they wish to record.

This functionality is likely to be useful for fields where

user studies are necessary such as Robot Learning from

Demonstration (LfD) and Human Robot Interaction (HRI).

As the Rosbridge client can be any internet host, the exact

network characteristics of the connection are not possible

to predict in advance. However, tests of a representative

selection of hosts can establish likely network characteris-

tics. Limited bandwidth and variable end-to-end delays are

a major concern for web connections. We first measure

the datarate (number of bits per second) being transported

through Rosbridge. Note that this does not include video

streams since a separate channel is used for this data.

Fig. 3(a) shows the datarates of the three largest topics

sent to the client at the rate of production. The average

datrate is about 580 kbit/s dominated by the /tf topic (530

kbit/s). For the PR2, the /tf topic updates the robot’s state

at 100 Hz. Since most of the state variables change infre-

quently, a simple optimization of this data channel consists

of transmitting only partial state updates of changing state

variables. Fig. 3(b) presents the datarates after applying this

optimization. The result is a significantly reduced datarate

(70 kbit/s) with spikes at times when the robot’s arms move.

A second optimization performed in this experiment is an

active throttling of topics.

The end-to-end delay is estimated by measuring the round

trip time for a small topic in ROS send from the client to a

node running on the robot. This is a more accurate measure

than network round trip times (ping) since it includes the

overhead involved in rosjs Javascript, Rosbridge, and ROS

for processing the messages. For a LAN connection this

round trip is about 30 ms while a US East-West connection

4http://www.ros.org/wiki/topic logger

increases this tenfold.

V. USER INTERFACE

Since users will not be local, it is necessary to have a

user interface that can be conveniently accessed remotely.

A web-based interface is a natural fit given this constraint.

Tools such as HTML5 and Javascript allow developers to

create sophisticated interfaces, and rosjs was designed to

take full advantage of this technology, enabling applications

developed in the web browser to communicate with a robot

running ROS and Rosbridge. Thus, the web interface has

access to the entire ROS middleware ecosystem. rosjs is a

large collection of visualization tools and widgets imple-

mented in Javascript and communicating with ROS topics

and services over Rosbridge. In this section, we describe two

approaches to for visualizing the robot’s state and sensor data

in a browser, developed using rosjs. We also illustrate various

user interaction techniques to operate the robot. A picture of

the developed interface is depicted in Fig. 4.

A. Video Visualization

A natural means of interacting with and checking on

the progress of the robot is through video. MJPEGs, or

motion JPEGs, are a file format in which each frame of

a video stream is separately compressed as a JPEG image.

We created an mjpeg streaming server that subscribes to

requested image topics in ROS and publishes those topics as

MJPEG streams via HTTP to a web browser. While rosjs is

capable of streaming video, the web browser is optimized to

efficiently download images in binary format. This additional

communication channel is used for increased performance

benefits. Since many of the previous labs reported problems

with sending a large number of high resolution video streams

over the internet due to latency, we deemed it important to

handle video streams as efficiently as possible. Users can

also provide the desired quality and size to accommodate

different connection speeds and interface designs.

B. 3D Web Visualization

One of the most useful tools in robot development is a 3D

visualization environment. One benefit of many 3D interfaces

is that the messages required to create them are relatively low

bandwidth, especially when compared to live video streams.

The remote lab interface described in this paper provides

this functionality. Whether robot models, poses, maps, or

custom visualization markers, the visualization interface can

display views of various types of robot data. The underlying

technology for visualizing 3D data on the web is WebGL,

a 3D graphics API implemented in a web browser without

the use of plug-ins. Similar to OpenGL, WebGL provides a

programmatic interface for 3D graphics using the OpenGL

ES 2.0 standard. Application developers may use the WebGL

library of their choice for visualization. Our 3D visualizer

provides an interface to WebGL based on world objects and

other high level classes. It also provides a scene graph, which

is an object-oriented representation of the 3D world. Such a

representation is especially suitable for robotic development,
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Fig. 4. In the PR2 remote laboratory the workspace is observed by multiple cameras and a motion capturing system (left). The remote users see and
control the robot through a web-based interface (right). 3D visualization based on WebGL is used to show the robot’s state and sensor data. A user can
interact with the PR2 by using one of the predefined interfaces or by writing small Javascript programs in order to send control commands.

since data is represented in various interdependent frames. It

also simplifies the extension to new data types since scene

nodes can be implemented for any data type and inserted into

the graph, as long as they adhere to a common interface.

C. User Interaction

In order for the remote lab to be useful, researchers must

be able to interact with the robot on a variety of different

levels. Different research projects require different interfaces.

Additionally, if frequent tasks can be automated this reduces

the burden upon the remote operator, allowing them to just

run preprocessed commands. In this section, we describe

three types of user interaction we have currently imple-

mented for the remote lab. The first interface allows the user

to manually tele-operate the robot through key commands

and a joystick widget; the second interfaces allows the user

to pick and place objects through a point and click interface;

and the third interface lets users run javascript code directly

within the browser. Users are able to select the type of

interaction they want for a particular situation and can switch

interaction modes without restarting the interaction.

1) Keyboard Teleoperation Interface: The keyboard tele-

operation interface allows the user to use the keyboard to

control the pan, tilt of the head, either arm, and using a

virtual joystick controller. In order to use keyboard control

for manipulation, the user selects the desired arm through the

interface and turns on control. Key commands issued by the

user, are translated into a new end position of the hand and

sent to the JTTeleop controller5 which calculates an inverse

kinematic solution.

2) Pick and Place Interface: As a part of creating the

remote lab we created a pick and place interface that allows

users to select objects from the interface. We extended the

pick and place demo 6 provided in ROS. After requiring the

robot to detect the table and objects on the table the user can

directly click on an object, select the appropriate arm, and

5http://www.ros.org/wiki/teleop controllers/JTTeleopController
6http://www.ros.org/wiki/pr2 pick and place demos

select the option ”Pick up object”. The robot then performs

calculations and selects the best stable grasping points for the

selected object. While the robot is performing computations

the interface is grayed out to provide feedback for the user.

3) Scripting Interface: For advanced users a simple script-

ing interface consisting of a text box and submit button

can be provided. Users enter and execute Javascript code,

including new components and classes, without the need of

a server-side script. This provides advanced users with the

ability to write complex robot controllers rather than issuing

a set of “commands” as in [19]. This enables users to test new

code without changing the entire interface as well include

Javascript code from other webservers on the fly.

VI. USE CASES

We have designed the remote lab to be a flexible and

extensible enough for many different types of users. In this

section we describe three potential use cases, however the use

of the remote lab is by no means limited to these situations.

A. Remote Development

The first use case one in which a remote developer

wishes to test, debug or experimentally evaluate code or an

algorithm on the provided system. In this use case, the remote

user provides a link to their code within an svn repository

when scheduling time on the remote lab. The user can then

interactively monitor the results of the code or algorithms

remotely debugging and performing experiments. This use

case would most likely be appealing to users who do not

have regular access to a PR2 and wish to develop, extend, or

demonstrate their applications or algorithms on this platform.

Users can provide benchmarking results that compare against

other algorithms tested on the same platform on similar tasks.

As part of this project, we provided use of our remote

lab for teams wishing to participate in the 2011 Learning

from Demonstration Challenge, held in conjunction with

the AAAI Conference and Robotics Exhibition. Teams were

invited to use the remote lab to develop and test their

algorithms on a PR2. Three teams of the four teams that
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used a PR2 to participate in the challenge used the remote

lab to develop and test their algorithms. Teams demonstrated

skills both for low level control as well as at high level

task planning. To demonstrate these skills, teams used the

web interface for tasks including watching the results of

experiments, helping techniques collect demonstration data

and performing demonstrations for the robot.

B. Learning from Demonstration Experiments

Learning from demonstration is paradigm in which users,

who are not roboticists or even programmers, demonstrate

desired tasks to the robot. Machine learning algorithms are

then used to create the controllers from the provided data.

All that is required of the user is the ability to complete

the task in a way that the robot can interpret. One of the

challenges facing LfD techniques is the ability to gather

enough data to construct truly robust and generalizable

controllers. Researchers are often limited by the need to bring

in a large number of subjects into the lab to gather data in

order to test their algorithms.

Remote laboratories like the one described in this paper

could be helpful for many types of LfD. Research would

have the ability to recruit a larger number of diverse users

resulting in large data sets that could be a shared resource

for the field. Since the technology used to create the lab is

open source and available to community, researchers can use

similar interfaces and recruit users from the internet for their

experiments.

C. Shared Autonomy

In many systems, robots and humans work as partners;

shared autonomy aims to bridge the gap between full human

control and full autonomy. Shared autonomy is useful when

environments are hazardous to humans such as search and

rescue domains and outer space or when humans are haz-

ardous to the environment such as robotic surgery. A key for

shared autonomy systems are intuitive and easily accessible

human-robot interfaces. The PR2 remote lab system is a

good example of such an interface. In much the same way

that LfD is a natural fit, the remote laboratory provides the

ability for researchers to test and develop shared autonomy

techniques. We have begun using this system to test a variety

of interfaces for shared autonomy for manipulation tasks.

VII. CONCLUSION

We presented a web-centered remote laboratory comprised

of a PR2 and the necessary hardware/software infrastructure

necessary to make available for public Internet use. We iden-

tified a set of requirements that apply to all web-based remote

laboratories and focus on solutions to these requirements.

Specifically, we presented solutions to interface, control and

design difficulties in the client and server-side software

when implementing a remote laboratory architecture. The

combination of shared physical hardware and shared mid-

dleware software allows for experiments that build upon

and compare against results on the same platform and in

the same environment for common tasks. We describe how

researchers can interact with the PR2 and its environment

remotely through a web interface, as well as develop similar

interfaces to visualize and run experiments remotely. The

PR2 remote laboratory was designed for remote development

as a primary use case. However, another significant use

could be for educational purposes. A PR2 remote laboratory

available for students could improve distance education, the

accessibility, and the cost of running laboratories.
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